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Abstract. The CRA Y -2 is considered to be one of the most powerful supercomputers. Its state-of-the-art
technology features a faster clock and more memory than any other supercomputer available today. In this
report the single processor performance of the CRA Y -2 is compared with the older, more mature CRA Y
X-Mr. Benchmark results are included for both the slow and the fast memory DRAM MOSCRA Y-2. Our
comparison is based on a kernel benchmark set aimed at evaluating the performance of these two machines
on some standard tasks in scientific computing. Particular emphasis is placed on evaluating the impact of
the availability of large real memory on the CRA Y -2 versus fast secondary memory on the CRA Y X-MP
with SSD. Our benchmark includes large linear equation solvers and FFT routines, which test the
capabilities of the different approaches to providing large memory. We find that in spite of its higher
processor speed the CRA Y -2 does not perform as well as the CRA Y X-MP on the Fortran kernel
benchmark. We also find that for large-scale applications, which have regular and predictable memory
access patterns. a high-speed secondary memory device such as the SSD can provide performance equal
to the large real memory of the CRAY-2.

1. Introduction

The CRA Y -2 with its 4.1 nanosecond (ns) clock is potentially over twice as fast as the
CRA Y X-MPj24 [Chen 1984, Cray 1985, Neves 1987]. In addition to its superior
clock speed, the CRA Y -2 has a tremendous advantage in word addressable memory.
The CRA Y X-MP, however, is a proven machine with a mature compiler and a large
set of applications programs developed especially for its architecture. Some of the key
architectural features of the two machines involved are given in Table I. Note that we
have given the features of the particular machines involved in this benchmark; for
example, the newer X-MPs have the faster clock rate of 8.5 ns compared to the 9.5 ns
listed in Table I.

Recently an upgraded version of the CRA Y -2 with faster memory has been
introduced [Cray 1987]. The essential difference between the newer CRA Y -2 and the
older machine is a faster DRAM MaS memory, which reduces the memory latency
from 57 to 45 cycles. Also all DRAM CRA Y -2 systems feature pseudo banking,
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Table Machine comparison (single processor). 2. Benchmarking Appl
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256
None

45(57)
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which allows faster memory accesses and improves performance. Each of the 128
banks of the CRA Y -2 is divided in half. If there are two accesses in different halves
of the same bank at the same time, then the second one can proceed after 25 cycles
(41 cycles on the slower machine). Pseudo banking effectively turns the 128 banks of
the CRA Y -2 into 256 banks and thus reduces the average memory latency. The
CRA Y -2S system, which features even faster static random access memory (SRAM),
is not considered here.

Also, all data in Table 1 refer to a single CPU since we are not concerned with
multitasking performance in this benchmark. We will point out how some of these
features affect the relative performance of the two machines. The first set of CRA Y-2
timings was obtained in March 1987 on the CRA Y -2 with serial number 2002, which
is installed with the NAS project at NASA Ames Research Center in Moffett Field,
California. A second set of CRA Y -2 timings was obtained in February 1988 on the
same machine (serial number 2002) to measure improvements in the Fortran
compilers. Finally, a third benchmark was carried out on the new CRA Y -2 (serial
number 2013) at the NAS project to measure the effects of the upgraded memory on
the machine performance. For brevity we will refer to the serial numbers of the
machines involved, when discussing the older, slower memory CRA Y -2 (2002) versus
the newer, faster memory CRAY-2 (2013).

The X-MP/24 timings were obtained using the Boeing Computer Services' machine
in Bellevue, Washington. The Boeing CRA Y X-MP, one of the older X-MPs, has a
clock rate slightly slower than the current rate of 8.5 ns on the newer models.

Twenty-four FORTRAN routines were benchmarked on both machines. These
computational kernels are typical of those found in scientific programming. They
were assembled based on the experience at Boeing Computer Services. Assembly-
coded efficient implementations of these kernels for the CRA Y X-MP are available
in VectorPak [Boeing 1987]. The benchmark also includes large problems that are
out-of-core problems on most other machines but the CRA Y -2. The solution to these
problems is computed in-core on the CRA Y -2 and out-of"core using the SSD (solid-
state-storage device) on the X-MP.

I

64,/{ords
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2. Benchmarking Approach

CRAY2
There are 24 computational kernels in the benchmark. They are listed below with a
short description of what computation they perform and the reason they were
included in the benchmark.

4.1
2

No
487
8 x 64 words
16K
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HClDFf performs a single one-dimensional FFT. This is an important computation-
al kernel that usually runs into memory contention problems.

HC:FFTS performs several one-dimensional FFTs simultaneously. This is an impor-
tant computational kernel that is heavily used in multidimensional FFT work. This
program vectorizes across the number of FFTs and avoids the memory contention
problems. This computational kernel is heavily used by several groups in the Boeing
company and is designed to provide high performance on a vector computer.

HC2XFf performs a two-dimensional FFT using external storage. This code uses
HCFFTS for most of the computations but also performs standard FORTRAN
direct access, fixed length record I/O. Although I/O is usually not a consideration
with the CRA Y -2's large memory, HC2XFT along with HSGEXL will measure the
performance balance between I/O and CPU speeds.

HSGELE solves general systems of linear equations Ax = b, using the best algorithm
(based on matrix multiplication) for vector computers. This again is an important
computational kernel that is designed to provide high performance on a vector
computer. This code was modified and used in the large problem benchmark.

HSGTLE solves a single tridiagonal system of equations Tx = b. This code is based
on an extension of the cyclic reduction algorithm and provides very efficient
performance on a vector computer.

H8MMPG computes matrix-matrix products of the form C = AB and
C = C :t AB.

HSMVPG computes matrix-vector products of the form y = Ax a~d y = y :t AX.
HSSGTL solves several tridiagonal systems of equations Tx = b simultaneously.

This code vectorizes across the systems to provide high performance for such
application areas as line iterative methods.

ISAMAX finds the element with the largest magnitude in a vector. This is inherently
a scalar operation but some vector architectures, such as the CRA Y X-MP, support
this operation in vector mode.

ISCTEQ counts the number of elements in a vector that are equal to a given scalar.
This is implemented in a loop with an IF THEN -END IF construct and tests the
ability of the compiler to vectorize this construct. For example, the CFT 1.13
compiler does not vectorize this loop, whereas CFT 1.14 does.

SASUM sums the absolute value of the elements in a vector. This operation tests the
ability to vectorize a recursive operation by separating the operations and collaps-
ing the partial sums at the end.

SAXPY performsy = ax + y, where x andy are vectors and a is a scalar. This loop
tests the computer's balance between memory references (two fetches and one store)
and floating point operations (one multiply and one add). The X-MP can execute
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two fetches and Ii store concurrently, while the CRA Y -2 can execute only one
memory access instruction at a time (either a fetch or a store).

SAXPYI performs an indexed SAXPY. This kernel performs the above loop, except
an index array is used for referencing the elements of the vector x. This kernel tests
the ability of the machine to randomly fetch entries from memory.

SCOPY copies vector x into vector y. This test the speeds of memory references. The
X-MP can do a fetch and a store concurrently, while the CRA Y -2 must execute the
fetch and store separately.

SDOT computes the vector inner product. This is an important computational kernel
that requires both a balance between memory and floating point as well as the
ability to collapse partial sums.

SDOTI performs an indexed SDOT.
SGTHR gathers entries of vector x specified by an index vector into the dense vector

y.
SLSTNE counts and lists entries of a vector not equal to a scalar. This is similar but

more complex than ISCTEQ.
SNRM2 computes the Euclidean norm.
SSCAL scales a vector with a scalar.
SSCTR scatters the entries of a dense vector into specified entries of a vector x. This

is the reverse of SGTHR.
SSW AP interchanges the contents of two vectors. This is a memory-intensive opera-

tion requiring two fetches and two stores with no floating operations involved. This
tests the memory reference speeds of the computer.
All the subroutines were written in portable FORTRAN 77. They were compiled

with CFT 1.13 on the X-MP. The exceptions were SGTHR and SSCTR, which
require CFT 1.14 to vectorize gather/scatter instructions. The code was written as
portable FORTRAN and no attempt was made to take advantage of the X-MP's
architecture or compiler. (For example, there was no unrolling of outer DO LOOPs.)
These kernels are designed to test the performance of a given computer/compiler in
executing FORTRAN.

The same Fortran routines were ported to the CRAY-2 in March 1987 and
compiled with CFT77, which is a port from CFT 1.09. Neither the X-MP nor the
CRA Y -2 would vectorize the complex SAXPY, so a compiler directive (IVDEP) was
added and both rates are reported. The CRA Y -2 did vectorize the complex dot
product, while the X-MP would not. A compiler directive was added to the complex
dot product and both times are reported for the X-MP.

In March 1987 code compiled under CFT2 generally executed about 30% faster
than the same code compiled with CFT77. Unfortunately, we were unable to use
CFT2 because at the time of the original benchmarking CFT2 did not support generic
functions, such as MIN, MAX, and LOG. The July 1987 release of CFT2 (version
3.0b) does support generics. However, the most recent release ofCFT77 (version 1.3)
is now within 5% of the performance of CFT2. Therefore, we did not include
benchmarking results obtained with CFT2.

The potential performance variation due to different compilers can be seen in the
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Table 2. Performance comparison of two compilers on the CRA Y -2 using a two-dimensional FFT routine.

Problem Size CFT77
MFLOPS

CFT2
MFLOPS

Ratio CFr2/CFI'77

1024 x 1024
1024 x 2048
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example. Bailey's FORTRAN FFT code was used in March 1987 to compare the two
compilers, CFT77 (version 1.2) and CFT2 [Bailey 1987]. The results are given in Table
2. The 35% performance difference between CFT77 and CFT2 was typical of results
obtained using the two different compilers at that time.
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Table 3 shows the performance for the routines described in section 2. The X-MP
timings were obtained at three different times under various system loads, and the
variation in timings was less than 10%. The CRAY-2 benchmark was executed ten
times at various system loads, and most routines showed a variation over 30% from
best to worst. The times reported for the CRA Y -2 are the median from all the data
collected. The CRA Y -2 data were obtained on serial number 2002 with CFT77

,

version 1.2.

The kernels that operated on vectors were tested with vector lengths from 1 to
20,480. The rates reported are for the vector lengths of20,480. The matrix-vector and
matrix-matrix operations used vectors with lengths ranging from 1 to 256. These rates
were computed with the longest vector as well.

The table also provides the vector h~lf-performance length, i.e., the length at which
the vector achieves one-half of the maximum performance for the operation. The true
asymptotic rate was not actually determined, but taken from the vector performance
at 20,480. The CRA Y -2 generally reaches its half-performance length before the
X-MP, but this can be attributed to the X-MP achieving higher rates.

On the CRA Y -2, a timing problem exists for the gather instruction, so the hardware
forces a maximum memory reference which results in three null references for each
data reference. As a result, SGTHR timings are much slower than SSCTR (scatter)
timings.

Note that in Table 3 SGTHR and SSCTR have been compiled using CFT 1.14 on
the CRA Y X-MP in order to take advantage of the hardware gather/scatter. Also, the
"asymptotic" rate for the matrix operations is the performance for n = 256.

Simply considering the basic clock speed one would expect the CRA Y -2 to be about
twice as fast as the X-Mr. The most important result of this benchmark, which
becomes clear from Table 3, is that this is not the case. In many examples the CRA Y-2
performed more slowly than the CRA Y X-MP, in some extreme cases by as much as
a factor of three. Most of the comparatively slow rates can be explained by consider-
ing the impact of architectural characteristics of the CRA Y -2.~rs can be seen in the
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X-MP/CRAY-2
RatioN1!2

1.77
2.85
1.97
1.97
1.31
1.92
2.00
3.28
0.72
0.62
0.62
0.71
1.49
1.50
2.20
1.74
2.18
1.95
1.74
0.89
1.83
1.29
0.28
2.22
2.08
0.70
0.70
1.67
1.53
1.24
0.93
1.51

76

3
2

459
152
225

34
6

56
223
41

451
85
18

160
89

3
3

157
27
92
87
25

CRA Y -2 in about the right range relative to its clock speed. Since SAXPY -type
operations are predominantly used in HSGELE, HSMMPG, and HSMVPG, these
kernels could also perform significantly faster with three paths.

For some other kernels the main source of performance degradation on the CRA Y -
2 was due to memory bank conflicts. This applied to the FFT routines (HCFFTS,
HCIDFT, and HC2XFT). Table 3 also lists many routines with stride I and stride 32.
The stride 32 is the worst-case stride for the X-MP. The worst case for the CRAY-2
is 256 (considering pseudo banking); however, a 32 stride causes a bank conflict every
fourth clock cycle on the CRA Y -2. The bank resolution time on the CRA Y -2 is 45
(or 57 for the slower memory machine) clock cycles and 4 clock cycles on the X-MP,
so the penalty for bank conflicts is much more severe on the CRA Y -2. Both
computers showed substantial degradation with the stride 32. However, the degrada-
tion was comparatively greater on the CRA Y -2 as, for example, in SSW AP.

The worst performance ratio (3.28 times slower) for the CRA Y -2 was obtained for
the tridiagonal linear equation solver. However, this Fortran code is based on a cyclic
reduction algorithm, involving parameters that have been optimized for the CRA Y
X-MP.

The performance of the CRA Y -2 has been significantly improved over the last year.
Major improvements are the initially mentioned upgrade to faster memory as well as
new releases of the Fortran compilers. We repeated the above benchmark in February
1988, and took both new improvements into account. These results are given in Table

4. The combined effect of both a better compiler and a faster memory resulted in up
to a 40% improvement in performance. In some cases this was enough for the
CRA Y -2 to come close or even surpass the CRA Y X-MP's performance.

4. Performance on Large Memory Applications

oth machines: ISAMAX,
,Y -2 was significant, and it
le only kernels that consis-

lad a slight advantage in a
icantly faster on the X-MP.
ran more than three times

Two standard linear algebra subroutines were chosen to evaluate the performance of
both machines when large memory is required. In particular, we were interested in
benchmarking a code that required SSD usage on the X-MP. Contrary to the
approach in the previous section, in which Fortran kernels were compared on the two
machines, here we attempted to use code that has been optimized for each machine.
All CRA Y -2 results in this section were obtained on the slower memory machine,
serial number 2002, using CFT version 1.2.

As the first benchmarking task, a two-dimensional complex FFT was chosen for the
following reasons: It is an important kernel in applications programming, it requires
a large amount of both computation and I/O, and it vectorizes well by performing
simultaneous one-dimensional FFTs.

The two-dimensional FFT executed on the X-MP is an optimized CAL code that
writes intermediate results to the SSD [Boeing 1987]. On the CRA Y -2 we used an FFT
developed by Bailey, whose one-dimensional FORTRAN FFT is a radix-4-algorithm
that avoids power of two memory strides [Bailey 1987]. Although the comparison
between CAL on the X-MP and FORTRAN on the CRA Y -2 may appear to be

ttributed to the availatlility
the CRA Y -2. The SAXPY
m the CRA Y-2 with three
XPY performance on the
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ardware upgrades (all figures
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1.2
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4.8
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148.0
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1.5
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50.2
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0
0
0
0
8
0
0
5
4
0
0
0
0
0
0
0
0
,0

,0
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CRAY-2. Then the FORTRAN subroutine in SGEFA performing matrix-vector
multiplications was replaced with the corresonding CAL routine, MXV A. A consider-
able increase in performance resulted, as shown in Table 5. However, the times
reported here for the CRA Y -2 should not be taken as optimal for solving linear
equations on the CRA Y -2. They are just an indication of the performance one can
achieve on large problems by making a few simple modifications in existing
FORTRAN code. A linear equation solver that operates at over 350 MFLOPS on
large problems has been developed by Calahan [1986]. An even faster solver might be
possible by using Calahan's approach based on a matrix-matrix multiplication
kernel, and by utilizing the new faster matrix-matrix multiplication subroutine de-
veloped by Bailey [1988]. CRA V's SCILIB provides a routine for matrix inversion,
which runs at 300 to 400 MFLOPS.

The times reported in Table 6 for the X-MP, however, are optimal. The linear
equation solver used on the X-MP is using an out-of-core Gaussian elimination
algorithm, based on block matrix-matrix products [Grimes 1988]. The program is
running at about 90% of peak machine speed and implemented as HSGEXL in
VectorPak [Boeing 1987].

The linear equation solver was executed five times on both ma~ines. The remark-
able result in Table 6 is not so much the actual performance, but the considerable
performance variation on the CRA Y -2. While all the routines varied about 15 to 35%
in performance depending on system load, a 70% difference was noted in the linear
equation solver. The best-case times were obtained on a Sunday morning at 2:44a.m.
The machine was probably idle at that time so memory contentions were minimal.
The worst-case times reported are closer to the average and to what one would expect

Table 5. Performance comparison on two-dimensional FFT codes.
.0

.3
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.0

.0

.0

.0

.0

Dimension CRAY-2
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Table 6. Performance comparison on linear equation solver.
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to get when the machine is busy. (All the times reported here are averages of five runs.
Each problem size is run five times consecutively.)

Cray Research, In.
Cray Research, Inc

2-3.
Grimes, R. 1988. ~

291-299.
Neves, K. w. 198i

Computer Servic

5. Conclusions

Received October
On the Fortran kernel benchmark the performance of the CRA Y -2 varied from about
one-third the performance of the CRA Y X-MP to three times the performance of the
X-MP. In many instances the comparatively worse performance of the CRA Y -2 can
be directly attributed to architectural disadvantages most notably the limited one path
to memory and the relatively slow memory. Improvements in compilers and improve-
ments in memory speed have led to some considerable overall performance improve-
ments on the CRA Y -2. However, both will not be able to overcome some of the
architectural limitations of the CRA Y -2.

While the X-MP generally had an advantage on the Fortran kernels, the CRA Y-2
showed it could easily outperform the X-MP on large problems. The CRA Y -2 did this
without the extra effort of writing temporary results to a disk file. However, the better
performance did not come as easily as a general user would hope for. Fast algorithms
for the CRA Y -2 require a detailed understanding of the architecture of the machine
and a fair amount of sophistication when implemented [see Bailey 1987, Bailey 1988,
Calahan 1986]. We venture to say here that the programming effort in implementing
high-speed linear algebra algorithms for the CRA Y -2 can be of the same level of
difficulty as the corresponding effort in implementing out-of-core algorithms using the
SSD on the CRA Y X -MP. For computations that require a regular and predictable
access to the data, the X-MP-type architecture with a high-speed secondary memory
device (which has evolved by now to the new CRA Y Y -MP) is an efficient alternative
to the large real memory of the CRA Y -2. But obviously the CRA Y -2 is the machine
of choice for any, more complicated application program with large real memory
requirements, for which a rewriting using I/O operations is out of the question.
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